您现在的位置: 全球仪器仪表MRO网_捌零零 >> 技术天地 >> MRO技术文章 >> 正文
矩阵基本知识(化学计量学必备)二
作者:全球MRO综合服务商    仪器仪表技术文章来源:全球MRO仪器仪表交易网    点击数:    更新时间:2006-3-15

或右特征矢量)外,矩阵的每个特征值都独立对应一个满足方程:A·q= ·q的右特征矢量。可用消去法求解每一个特征矢量。例如上述方程式中 =1时的右特征矢量求解如下:
  = 
化为上三角矩阵后,得:q1=q2=2q3。由于方程 ,奇异,方程有无穷多组解,又右端项为0,齐次,必定有解。故任何一个矢量q满足A·q= ·q时,则该矢量的某个倍数也一定满足。
求解一个高阶非对称满秩矩阵的每个特征矢量大约需n3/3次乘法,计算量很大。
可以把全部特征值及对应的右特征矢量组合成一个标准特征值方程:
A(q1 q2 … qn)= (q1 q2 … qn) ,
即AQ=QA。同理,也有左特征矢量。
A和AT具有同样的特征矢量。对于每一个与A的某一个特征矢量对应的特征值也都有AT的一个特征矢量p,使得:
ATp= ·p
转置该方程。特征矢量p可看作是A的一个左特征矢量:
pTA= ·pT
矩阵方程式A·q= ·q,的全部特征值解列于表A-1中。
表A-1 特征值和左右特征矢量
左特征矢量 特征值 右特征矢量
(7 –10 6)T 4 (2 1 0)T
(-1 2 -1)T 1 (2 2 1)T
(1 –2 2)T -8 (-2 1 4)T
对称矩阵的转置仍是它自身。左右特征矢量相同,不必加以区分。表A-2为一例,其特征矢量一已数乘,使最大元素之值为1。
表A-2 对称矩阵的特征值和特征矢量
矩阵 特征值 右特征矢量
  92-1 (1 1 1)T(1 –1 0)T(-0.5 –0.5 1)T
三、 对称矩阵特征矢量的正交性条件
设qi和qj是某一对称矩阵A的特征矢量,对应于不同的特征值 和 ,则
 和 
转置第2个方程:&

上一页  [1] [2] [3] 下一页

 

本文内容由全球仪器仪表MRO网_捌零零http://www.80017.cn/ 提供!


注:如果你的电脑不可以直接下载,请右键点击以上文字或'免费下载'图标,然后选目标另存为,进行下载保存

(本文来源:全球仪器仪表MRO网_捌零零)